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Abstract— Robot learning by demonstration gives robots the
ability to learn tasks which they have not been programmed
to do before. The paradigm allows robots to work in a greater
range of real-world applications in our daily life. However, this
paradigm has traditionally been applied to learn tasks from
a single demonstration modality. This restricts the approach
to be scaled to learn and execute a series of tasks in a real-
life environment. In this paper, we propose a multi-modal
learning approach using DMP+ with linear decay integrated
in a dialogue system with speech and ontology for the robot
to learn seamlessly through natural interaction modalities (like
an apprentice) while learning or re-learning is done on the fly
to allow partial updates to a learned task to reduce potential
user fatigue and operational downtime in teaching. The perfor-
mance of new DMP+ with linear decay system is statistically
benchmarked against state-of-the-art DMP implementations.
A gluing demonstration is also conducted to show how the
system provides seamless learning of multiple tasks in a flexible
manufacturing set-up.

I. INTRODUCTION

Typically, robots in daily operations are programmed and
controlled through either a teach pendant or a programming
environment which is both time-consuming and requiring
dedicated robotics engineers. One challenge for robots to be
deployed deeper in real-world applications is the ability to
learn like an apprentice [1]. Robot learning by demonstration
(RLD) has been proposed and studied in recent years to
address this issue [2], [3], [4]. However, RLD has mostly
been implemented to learn tasks from a single demonstration
modality, such as kinaesthetics [2] and video recording
[3]. Such paradigms limit the range of real-world scenarios
robots can be applied to, because human intervention is still
required to programme the robot to transition among learning
and executing a growing repertoire of learned tasks.

In this work, we propose a multi-modal RLD framework
to learn, perform and adapt tasks through multiple interaction
modalities. In order to cope with the growing repertoire of
tasks, the framework employs an ontological representation
for the knowledge learned while the capturing and validation
of knowledge is managed by a dialogue system interacting
through both speech and kinaesthetics. As many tasks are
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variants of one another (for instance, a new task is a combi-
nation of another two, a new task is a partial change to the
original and so on), a task representation that can be flexibly
adapted on the fly will make the interaction more natural,
reduce user fatigue in demonstration as well as increase
learning throughput. For this purpose, we introduce the
Dynamic Movement Primitives Plus (DMP+) [4] with linear
decay instead of the originally proposed exponential decay
to allow online easy modifications of a learned task while
keeping the learning outcome an accurate representation of
the demonstration.

We experimentally validate the model using the UJI Pen
Characters dataset to perform insertion of an additional char-
acter into an existing model of another character and statisti-
cally compare the results against state-of-the-art implementa-
tion of DMPs. We also conduct a real-world demonstration to
showcase the merits of the full multi-modal learning system
in performing a flexible manufacturing task of gluing pieces
of customised products. The rest of this paper is organised
as follows: We present the relevant literature in Section II
followed by the overall architecture of the framework in
Section III. The detailed implementations of each module are
described in Section IV. We present the experimental results
and a gluing demo in Section V and finally the conclusions
and future work in Section VI.

II. RELATED WORK

Traditionally, robot learning by demonstration (RLD) fo-
cuses on using a single modality to encode a particular
task [2]. Limited literatures have discussed on a multi-modal
approach in RLD. Multi-modality in robot learning has been
proposed in terms of modelling stochastic policy [5] and
reward function [6], however, limited literature has addressed
the topic of multiple input modalities. As presented in [7],
language plays a coordinating role in real-time learning,
integrating the “show” and “tell” modalities forms a crucial
part in RLD.

A. Dynamic Movement Primitives Plus

Dynamic Movement Primitives (DMPs) are a biologically
inspired formulation of the human action behaviours [8].
It consists of a simple goal driven task governed by a PD
controller and local attractors along the task represented by
a group of forcing terms. It combines non-linear dynamical
systems with statistical machine learning which give rise
to many desirable outcomes such as ability to generalise,
guaranteed convergence and to easily couple with other
dynamical system [9].
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Although DMPs have been demonstrated on a wide range
of applications [9], [10], [11], limited literature discusses the
issues of model accuracy [4], [12], [13] and modifications of
DMPs [14], [15], [16], [17]. Both qualities are of paramount
importance in industrial applications [12], especially in
flexible manufacturing where productivity improvement and
operational downtime saving are critical for these high-mix
low-volume production jobs.

In [4], the authors proposed to insert a bias term into the
original DMP implementation to allow the overall system
to learn a given task accurately. In the original DMP im-
plementation, exponential decay system is chosen to ensure
convergence towards the goal point [18], [19], [20]. However,
in such systems, the duration of the task is limited by the
numerical resolution of the computational platform which
makes it difficult to modify primitives, such as joining and
inserting any new primitive into an existing task. In the
DMP+ formulation [4], the convergence mechanism has been
provided using truncated kernels. This frees up the design of
the canonical system to address the need of a system that
can be joined by another one without having to worry about
the vanishing exponential time decay problem. Thus, a linear
decay system could be used in place of the exponential one to
allow a DMP+ system to achieve arbitrary update to existing
model on the fly.

B. Multi-modal Dialogue System

On the other hand, the incorporation of a multimodal
dialogue system allows a more natural communication be-
tween an operator and the robot to setup, teach, correct
or execute repetitive tasks. Thanks to recent improvements
in robustness, accuracy, flexibility, and modularity in dif-
ferent technologies like speech and object recognition [21]
[22], natural language understanding and dialogue [23] [24],
grounding [25], integration of ontologies or knowledge bases
[26], it has been possible to include these capabilities into
many different kind of robots and applications [27] [28]. This
way, by means of using natural language commands and a
conversational style of interaction, an operator can request a
robot to start a given task (direct commands), set the values
of the different parameters needed for the task (e.g. speed of
execution, use of a specific tool, tolerance margin, number
of units to produce, etc.), then ask for recommendations for
some parameters for which the operator may not be sure,
followed by checking the validity of the final configuration
(use of expert knowledge), and finally receiving feedback
about the execution of the task while the operator could be
performing other duties meanwhile.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the overall organisation of our proposed
architecture. Since this platform can be used for different
applications, and can be integrated with other existing ROS
components, some of our modules can be replaced for others
or become optional depending on the specifications of the
tasks to perform. In this section, we will provide a short

Fig. 1. System architecture of the multi-modal dialogue system

description of each module. For more detailed information
please refer to [29].

Graphical User Interface and Control (GUI): The GUI
is the main communication window with the robot operator
allowing to collect or display input/output information by
means of clickable buttons, a microphone, speakers, input
forms for text, webcam video, graphs or animations. This
way, the operator can load a previous project configuration,
start or stop actions, or observe the execution of a task
remotely. The control interface is mainly intended for ad-
ministration and debugging purposes allowing fine tuning
control of different configuration parameters for each module
in the platform and checking their respective logs output. In
both interfaces, we use the ROSbridge library and AJAX
messages to connect the GUI to the ROS framework for low
level access of the different modules.

Automatic Speech Recogniser (ASR) and Machine
Translation (MT): The goal of the ASR is to transcribe
the operator’s speech when interacting with the robot in
spite of noise or variations in accents and languages; our
implementation is focused on English but we can handle dif-
ferent languages like Malay, Chinese, or Tamil by internally
translating the transcribed sentences into English.

On the other hand, in order to quickly correct typical
transcription errors and reduce the problem of recognizing
out-of-vocabulary (OOV) words, in [30] we proposed the use
of an MT system trained using words and phonetic encoding
representations on the n-best lists of the ASR results. This
approach improves the ASR performance by reducing the
word error rate (WER), the correct transcription of domain
specific words, and increasing the matching of the corrected
transcriptions to the sentences that the NLU is trained to
parse.

Natural Language Understanding (NLU) and Dialogue
Management (DM): The NLU provides an interpretation of
a given sentence or command (e.g. typed in a text box in
the GUI or transcribed by the ASR) in a form that can be
used by the different modules. Our platform allows using a
rule-based approach for tasks with a closed set of grammar
constructions, or a statistical approach for applications with
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more variability and availability of training data. In addition,
the module performs different pre-processing strategies to
deal with numbers, abbreviations, aliases, and spelling cor-
rections which are very frequent in most industrial tasks, and
noisy or multilingual environments.

The DM is one of the most complex modules in the
architecture since it asynchronously handles different sources
of information (e.g. the NLU interpretation, direct inputs
from the interface, the interchange of information between
modules (skills server, watchdog, NLG), access to knowledge
bases, confirmations, corrections, presentation of errors, etc.)
where all the processing must be done in a prioritised
sequence of actions in order to complete the task or to
perform more important orders first. The implementation
of our gluing task (see Section V-B follows a multi-slot
frame-based approach defined in a finite state-machine flow
although the platform allows single-slot filling approach or
a multi-goal approach [31].

Skill Server, Ontology and State Publisher: the skill
server acts as a mediator between the low level primitives
of the robot, the validator, and the ontology allowing the
separation of the specific details of the robot implementation
from the high level API calls used by the DM and other
modules in the platform.

The ontology provides the formal representation of the
properties, types, and relationships between the different
domain entities in the task. This codification of the expert
knowledge allows the robot to provide recommendations,
validation of parameters and execution of the task. Our
implementation uses SESAME for storing, Protègè for speci-
fication, and Tomcat for access through a RESTful interface.

The state publisher is a ROS publisher that publishes all
the parameters from the ontology and broadcast them every
second as a topic allowing any module to be subscribed to
the topic and get access to the task information without
depending only on having access through the DM. This
feature is important specially for some tasks where a faster
response is needed.

Validation, Recommendation and Watchdog: These
three modules respectively allow: a) checking that the pa-
rameters provided by the user are correct and that the robot
owns what is required to perform the task (e.g. supplies
material, tools, etc.), b) to provide default or recommended
parameter values for specific tasks or setup configuration,
and c) to perform a periodical scanning or checking of the
“robot health” in order to guarantee that it can execute the
tasks required by the operator and automatically stopping the
robot in case a safety break is detected.

Natural Language Generator (NLG) and Text-to-
Speech (TTS): The NLG converts the high-level concept
outputs from different modules into syntactic structures and
words that the TTS can convert into an audible signal to be
played to the operator. Our NLG is based on using prompt-
templates that can generate new messages by modifying
different parameters like tense, mode, subject, object, verb,
etc. in the sentence.

LAP Robot Controller: Finally, the physical interaction

and task learning component is implemented in this module.
We adopt the Learn-Adapt-Production approach proposed
in [12] with a Linearly Decayed DMP+ as the underlying
learning-by-demonstration framework which will be detailed
in the next section.

IV. LINEARLY DECAYED DMP+
In [4], we demonstrated that DMP+ outperforms the

original DMPs in trajectory accuracy. Extending DMP+, we
propose an enhanced version which allows the system to per-
form effective trajectory joining and insertion by removing
the problem of vanishing exponential time decay.

A. Modification to DMP+

The DMP+ formalisation is characterised by a second
order dynamical system describing trajectory dynamics and
a first order canonical system to replace the explicit time
dependence as follows [4].

τ
2ÿ = αz(βz(g− y)− τ ẏ)+ f (1)

f =

N
∑

i=1
(wix+bi)ψi

N
∑

i=1
ψi + ε

(2)

ψi =

{
exp(− hi

2 (x− ci)
2), if −θi ≤ x− ci ≤ θi

0, otherwise
(3)

τ ẋ =−αxx (4)

where g is the goal state, τ the temporal scaling factor, and
αz,βz,αx positive constants. hi is the width of each kernel ψi
centred at ci, while wi and bi the learnable weights and bi-
ases. DMP+ represents a globally stable system with a unique
attractor (ẏ,y) = (0,g) as the forcing term f vanishes. DMP+
differs from the original DMPs by introducing learnable
local bias terms and providing an alternative convergence
mechanism through truncated kernels. DMP+ is capable of
modelling arbitrarily complex trajectories by using learnable
forcing terms, parameterised by N kernels ψi.

x in (4) is the phase variable to denote time implicitly,
with the closed-form solution with respect to time t,

x = e−αx∗t (5)

for trajectories with a large t, x may exceed the numerical
resolution of computational platforms, thus constraining the
length of the trajectories to be learned. Care must be taken
in selection of αx to ensure the numerical stability and
convergence of phase variable to 0 at the end of trajectories.
In [32], it is shown that the selection of αz changes goal
convergence in trajectories significantly. As DMP+ uses
truncated kernels for convergence, we are free to choose
an alternative canonical system suited for our purposes. To
improve the numerical stability, and effectively solve the
problem of trajectory joining and insertion, we replace the
exponential decay system with a linear decay system

ẋ =− 1
T

(6)
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whereby T is the length of the trajectory for learning.

B. Primitives Learning with DMP+

The number of kernels N is determined empirically, such
that the mean square error (MSE) of positional deviation is
less than a constant threshold φ [4]. The exact value for φ

depends on specific application requirements.

MSE =
1
P

P

∑
j=1

(yd− ylearned)
2 < φ (7)

Given N, kernels are placed evenly across the phase
variable x as follows,

ci =
i−1
N−1

, i = 1, ...,N

hi = (p(N−1))2, i = 1, ...,N

θi =
q√
hi
, p < q

(8)

where p and q are positive constants. (8) limits each kernel
to only model samples within q standard deviations from the
center ci.

Several methods exist for solving wi and bi, including lo-
cally weighted regression [33], globally weighted regression
[34], and gradient descent with path integral approach [32].
We choose locally weighted regression over global regression
as our testing revealed that global regression tend to overfit
and produces more kinks in acceleration profile [4].

C. Joining of Movement Primitives

A simple way for joining primitives is to perform one
DMP+ until it reaches its goal and then start off the next one
at that point. However, the simple approach suffers from a
undesirable discontinuity in acceleration [34] and trade-off
between goal convergence and modelling accuracy [32]. We
propose a method that joins two DMP+ representations A
and B, such that B starts at the goal of A, and transition
smoothly from A to B.

We first define two subroutines in Algorithm 1 and 2,
which scales the range of the phase variable in a DMP+
representation while leaving the trajectory unchanged. The
linear decay system makes such scaling straightforward. In
all algorithms, we assume all DMP+ phase variables have
range [0,1].

Algorithm 1 ScaleLeft
Input: DMP+ representation D = {wi,ci,bi,hi|i = 1, ...,N},

scale factor r
Output: scaled DMP+ representation D′

1: w′i = wi/r
2: bi = bi +(r−1)w′i
3: c′i = 1− (1− ci)r
4: h′i = hi/r2

5: return D′ = {w′i,c′i,b′i,h′i|i = 1, ...,N}

ScaleLeft maps a trajectory to range [r,1] while ScaleRight
maps a trajectory to [0,r].

Algorithm 2 ScaleRight
Input: DMP+ representation D = {wi,ci,bi,hi|i = 1, ...,N},

scale factor r
Output: scaled DMP+ representation D′

1: w′i = wi/r
2: bi = b′i
3: c′i = rci
4: h′i = hi/r2

5: return D′ = {w′i,c′i,b′i,h′i|i = 1, ...,N}

The primitive joining algorithm is presented in Algorithm
3, to join trajectory D2 after D1, such that goal1, the goal of
D1, is used as the starting position of D2.

Algorithm 3 JoinTrajectory

Input: D1 = {w1
i ,c

1
i ,b

1
i ,h

1
i |i = 1, ...,N1},D2 =

{w2
i ,c

2
i ,b

2
i ,h

2
i |i = 1, ...,N2}, T1, T2

Output: joined DMP+ representation D′

1: r1 = T 1/(T 1+T 2);
2: r2 = 1− r1
3: D1=ScaleLeft(D1,r1); D2=ScaleRight(D2,r2);
4: δ = goal2− s2

Find kernels to update:
5: imin = argmin

i
r− ci ≤ θi, i = 1, ...,N

6: imax = argmax
i

ci− r ≤ θi, i = 1, ...,N

Sample generation:
7: xmax = cimax +θimax ; xmin = cimin −θimin

8: Generate sample points {y(x)|xmin <= x <= r} from D2
and {y(x)+αzβzδ |r < t <= xmax} from D1
Update the kernels:

9: Update the kernels {w1
i ,b

1
i |imax <= i < N1} and

{w2
i ,b

2
i |1 <= i <= imin} with sample points generated

10: return D′ = {D1,D2}−{w1
N1
,c1

N1
,b1

N1
,h1

N1
}

In Algorithm 3, s2 denotes the starting position of D2,
and T1, T2 the lengths of D1, D2 respectively. The joined
trajectory D’ has a shifted goal position goal2 +goal1− s2.
The canonical system of D’ is updated to

ẋ =− 1
T1 +T2

(9)

We note that the last kernel of D1 is discarded as it coincides
with the first kernel of D2.

In short, the algorithm first maps D1 and D2 onto the
appropriate ranges of the phase variable using the scaling
factor r. It then updates the kernels affected by the joining
operation, namely those at the end of D1 and at the start of
D2. The update ensures a smooth transition from D1 to D2.
Lastly, we observe that ci+1−ci =

1
N−1 , therefore the number

of kernels requiring update is a constant b2(N−1)θic =⌊
2q
p

⌋
, which results in an effective joining operation.

D. Flexible Trajectory Insertion

In [4], we presented an algorithm to modify a learned
trajectory based on new partial demonstrations. We extend
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the previous technique to achieve trajectory substitution
where the inserted segment may be of arbitrary length in
comparison with the original one. The method alleviates our
previous limitation that the replacement trajectory must be
approximately the same length as the replaced segment.

We only require the start and end points of the replacement
trajectory to match approximately the start and end points of
the replaced trajectory segment to avoid discontinuity.

The insertion algorithm is presented in Algorithm 4.

Algorithm 4 Modify Trajectory

Input: DMP+ representation D = {w1
i ,c

1
i ,b

1
i ,h

1
i |i =

1, ...,N1}, x1, x2, Trajectory modification M, TD, TM
Output: updated DMP+ representation D′

1: T ′ = (1+ x2− x1)TD +TM
2: r = T 1/T ′;

Find kernels to be updated:
3: imin = argmin

i
x2− ci ≤ θi, i = 1, ...,N

4: imax = argmax
i

ci− x1 ≤ θi, i = 1, ...,N

Find the range of trajectory needed for kernel up-
date:

5: xmax = cimax +θimax ; xmin = cimin −θimin

6: Generate sample points Snext = {y(x)|xmin <= x <= x2}
and Sprev = {y(x)|x1 <= x <= xmax}
Learn new kernels

7: create Nm new kernels DM evenly placed from r ∗ cimin

to 1− r ∗ (1− cImax)
8: Learn DM with sample points Sprev,M,Snext
9: Dnext = ScaleRight(D1..imin−1,r);

10: Dprev = ScaleLe f t(Dimax+1..N ,r);
11: return D′ = {Dprev,DM,Dnext}

Here, x1 and x2 denote the implicit start and end of
the replaced segment, while TD and TM denote the length
of the original and replacement trajectories respectively.
Again, only a constant number of existing kernels require
re-learning. The Nm new kernels are used to model the
replacement trajectory. We observe that Algorithms 3 and 4
share very similar strategies: 1) mapping the existing kernels
to the appropriate ranges of the phase variable; 2) re-learning
kernel parameters; and 3) combining the kernels to yield the
new representation.

V. EXPERIMENTAL EVALUATION

A. Statistical Analysis

To benchmark on model accuracy, we compare the per-
formance of DMP+ with linear decay against DMP+ with
exponential decay [4] and the original DMP (with 2 times
the number of kernels used by both DMP+s) in modelling
trajectories of single-stroke characters from the UJI Pen
dataset1. Each character is scaled to within a 1cm2 and
we set the kernel count to N = 10 for DMP+. Fig. 2
summarises the MSE in positional deviation achieved by the

1dataset available at https://archive.ics.uci.edu/ml/
datasets/UJI+Pen+Characters
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Fig. 2. Box plot of MSEs achieved by DMP+ (linear), DMP+ (exponential)
and original DMPs with twice as many kernels. DMP+ still outperforms
DMPs with a small margin.

three formulations. It shows that both DMP+ formulations
achieve almost identical trajectory accuracy and outperforms
the original DMPs with twice number of kernels.

Furthermore, we test the proposed trajectory joining algo-
rithm on the UJI dataset. In this experiment, two characters
are joined with the goal of the first character set as the
starting point of the second character. To test the algorithm’s
modelling accuracy, we also learn the same character pair
as a single trajectory with DMP+ using equal number of
kernels. Fig. 3 shows a snapshot of the character pair ab
joined using the joining algorithm and DMP+ batch learning.

The results illustrate that the joining algorithm effectively
and accurately joins two trajectories together, with modelling
accuracy comparable to batch learning. The junction point is
also correctly modelled by the joining algorithm. Fig. 3b
shows that velocity profile is smooth for each method with
a slight variation at the junction point. Fig. 3c also shows
that both methods create continuous acceleration profiles.
We attribute the kinks in the acceleration to noise from
the numerical differentiation used in trajectory learning,
as the dataset does not provide instantaneous velocity and
acceleration at each sample.

B. Gluing Demo

The overall multi-modal learning by demonstration frame-
work is implemented in ROS on the KUKA LBR iiwa robot2.
This prototype system is used to perform some gluing tasks
with a mock-up glue head for simplicity. The experimental
setup is shown in Fig. 4. The system learns the outlines of
two toy figurines shown in Fig. 5 through speech dialogue
and kinaesthetic teaching. It first learns the outline of one
figurine, and uses the proposed insertion algorithm to adapt
the learned task with a partial demonstration of the head
segment of the other figurine. The kinaesthetic demonstration
is sampled at 50Hz.

2Video can be viewed at https://youtu.be/jK3LgbcNmGU
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Fig. 3. a: Trajectory for character a, reproduction by DMP+ joining algorithm and batch learning. b: Learned velocity in X dimension for DMP+ joining
and batch learning. c: Learned acceleration in X dimension for DMP+ joining and batch learning

For the dialogue part, we defined a state machine with
13 states that allows getting 3 different process parameters
(i.e. speed, type of gluing: continuous or point, and the part
to glue), execute the gluing task, start and stop the teaching
process, load a pre-defined model, and repeat or finish the
task; we also defined 42 rules for the NLU grammar in
order to parse salutations, confirmations, starting or stopping
the teaching mode, to reconfigure and re-start the execution,
to stop the robot, switch among tasks and figurines, ask
for recommendations, and set the parameters using different
grammatical constructions (e.g. one or several parameters at
once, using abbreviations). Lastly, we trained our MT system
by asking 7 people from different nationalities to repeat at
least 3 times the 40 most common sentences used in the
demo and storing the top 10 ASR n-best results for each,
accounting a total of 16K parallel sentences. Check [29] and
[35] for more details about the design and evaluation.

For the DMP+ with linear decay implementation, we set
αz = 25, βz = αz/4 according to [9]. ε is an arbitrarily small
value of 10−8. We set p = 2 and q = 3 such that each
kernel only omits samples more than 3 standard deviations
away from the centre. For all experiments, we use Euler
integration to calculate trajectory dynamics with the step size
corresponding to the sampling frequency of demonstrations.

Fig. 4. The experiment setup to simulate gluing task on KUKA LBR-iiwa.

Fig. 6 shows that the update algorithm achieves compa-
rable MSE against DMP+ batch learning. We note that the

Fig. 5. Two figurines with different head structures. Task modification is
done to learn only the difference (i.e. the trajectory of the head).

modification segment is almost twice as long in duration as
the segment to be replaced. The update algorithm success-
fully alleviates the trajectory update limitation of DMP+ with
exponential decay.
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Fig. 6. Left: The captured adaptation to the original demonstration. Right:
The 2D plots of the demonstrated task adaptation, the learning outcome
using DMP+ with update algorithm and the outcome using batch learning.

The experiment results show that DMP+ with a linear
decay system achieves 1) comparable performance with the
original DMP+ formulation and 2) effective trajectory joining
and insertion on-the-fly. The linear decay system allows us to
effectively scale trajectories to desired ranges of the phase
variable and perform joining and insertion afterwards. We
further exploit the use of truncated kernels in our model to
allow alternative design choice of the canonical system for
the phase variable.
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VI. CONCLUSION

We proposed a multi-modal robot apprenticeship system
to learn multiple tasks from demonstration through natural
interaction modalities. This system made use of a linearly
decayed DMP+ model integrated in a dialogue system with
speech and ontology. The new DMP+ model achieved com-
parable trajectory accuracy against DMP+ and significantly
outperformed the original DMPs formulation while allowing
partial reuse of previously learned task. This reduced user fa-
tigue and operational downtime due to teaching redundancy.
A gluing demonstration was implemented using this system
to showcase how the KUKA robot was able to learn multiple
tasks seamlessly.
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