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Abstract— Learning based methods have been used to pro-
gramming robotic tasks in recent years. However, extensive
training is usually required not only for the initial task
learning, but also for generalizing learnt model to the same
task but different environment. In this paper, we propose
a novel Deep Reinforcement Learning algorithm for efficient
task generalization and environment adaptation in robotic task
learning problem. The proposed method is able to efficiently
generalize the previously learnt task by model fusion to solve
the environment adaptation problem. The proposed Deep Model
Fusion (DMF) method reuses and combines the previously
trained model to improve the learning efficiency and results. In
addition, we also introduce a Multi-objective Guided Reward
(MGR) shaping technique to further improve training efficiency.
The proposed method was benchmarked with previous methods
in various different environments to validate its effectiveness.

Index Terms— Reinforcement Learning, task generalization,
model fusion.

I. INTRODUCTION

As a result of the rapid development of robotic technolo-
gies, robots have been widely used in various applications in
recent years. Nevertheless, programming the robot for given
tasks is still manual and costly. For many robotic applications,
extensive manual teaching or offline programming is required
to program robotic tasks. Even for the same category of
robotic tasks with slightly different environment, trajectory
adjusting or fine-tuning is still required. To improve the
efficiency and reduce the effort required for the robotic pro-
gramming, learning-based methods can be used to program
the robotic tasks. With learning-based methods, robot pro-
gramming can be done without much manual programming
or tuning of the trajectories. Compared to traditional manual
teaching or offline programming, learning-based methods are
also more general and robust to handle the same category of
task.

Among the learning-based methods, Reinforcement Learn-
ing (RL) is one commonly used method to tackle robotic task
learning problem [1], [2]. RL algorithms have been success-
fully applied to robotic applications such as assembly [3],
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pouring [4], and insertion [5] in recent years. The robots learn
a policy with RL after training stage, then they are able to
generate actions with the learnt policy based on the current
state/observations. The RL-based methods usually work well
for the same tasks with similar environment settings after
extensive initial training.

However, in many robotic programming applications, the
environment may change over time for the same robotic task
(e.g. pushing, grasping). The performance of the learnt policy
may thus drop for the same robotic task, when applying
the learnt model to changed environment [5], [3]. Therefore,
additional training would be required for the learnt model
to generalize and adapt to the new environment in order
to improve the results. Such an additional training for task
generalization and environment adaptation is usually costly.
Thus reducing the cost of additional training for task gener-
alization and environment adaptation is desired, to improve
the efficiency.
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Fig. 1: (a) The DMF-RL system that combines the knowledge
from previous learnt model for efficient robotic task general-
ization (b) The robot agent learning structure using DMF-RL
system (c) DMF policy network structure



In this paper, we propose a novel algorithm for efficiently
generalizing the robotic task learning problem to new envi-
ronment. The proposed method uses model fusion to reuse the
previously learnt knowledge and thus speed up the training
in task generalization process and improve the system per-
formance. The main contributions of the proposed method
are:
• a Deep Model Fusion (DMF) method to store and com-

bine the previous trained knowledge, which speeds up
the training process for task generalization and improves
the results when the environment changes;

• a Multi-objective, Guided Rewards (MGR) system that
converts the sparse rewards of typical RL problem to a
multi-objective dense rewards system; and

• extensive studies to benchmark and validate the pro-
posed methods in different environment settings.

II. RELATED WORK

Reinforcement Learning (RL) has demonstrated great suc-
cess in many applications during past few years [1], [6], [7].
Value-based RL methods such as Deep Q-Learning (DQN)
and its variants have outperformed human beings in various
Atari Games [6] [8]. Value-based RL methods employs a
argmax to select the action with the maximum Q-value,
which makes the value-based based more suitable for the
applications with discrete action spaces. RL has also been
applied to many robotic learning problems [9], [10] with
continuous action spaces. Because of the continuous action
space of the robotic applications, policy-based methods are
more suitable and usually used [11]. The policy-based meth-
ods compute the gradient of the parameterized policy and
improve the policy based on the policy iteration mechanism
[12]. Policy-based algorithms such as Deterministic Policy
Gradient [13], Deep Deterministic Policy Gradient (DDPG)
[14] and Proximal Policy Optimization (PPO) [15] have been
successfully applied to address the continuous action space
problems in various robotic applications.

RL usually requires large amount of data to train the
model. In order to improve the training efficiency, differ-
ent importance sampling methods have been proposed to
sample from the experience into the replay buffer, such
as prioritized replay buffer [16] and Hindsight Experience
Replay (HER) [17]. Asynchronous Advanced Actor-Critics
(A3C) [18] has also been proposed to parallelize and improve
the computational efficiency of training. Generalization and
adapting to new environment is also an important research
direction for RL applications in robotics [19], [20]. The
performance of the previously trained model would drop
even when applying it to similar tasks with different en-
vironment settings. Methods such as training from scratch,

or additional training from existing model, could be used
to train the model to improve the performance. Transfer
learning could also be applied to RL problems as well [21].
However, these learning paradigms are not designed to handle
the environment adaption problems in robotic task learning
applications; and they still require extensive training when
the environment changes. In this paper, we propose a model
fusion method to reuse the previously trained knowledge to
improve the training efficiency and system performance when
environment changes.

III. PROPOSED METHOD

In this paper, we propose a novel Deep Model Fusion
Reinforcement Learning (DMF-RL) method for efficient
robotic task generalization. The proposed method aims to
improve the efficiency when generalizing the learnt task to
the similar tasks with different environments settings. The
proposed DMF methods utilizes the knowledge and combines
the previously trained models to reduce the training required
for task generalization. A multi-objective guided rewards
system is also proposed along the method to convert the
sparse rewards to dense rewards and thus further speeds up
the training process. The proposed method is illustrated in
Figure 2.

A. Markov Decision Process

A finite-horizon Markov Decision Process (MDP) is used
to model the robot task learning problem in this paper. MDP
could be represent as a tuple (S,A, T , r, λ), where S is the
state space; A is the action space; T : S × A ⇒ S is the
state transition model; r : S × A ⇒ r ∈ R is the rewards
by taking an action at a certain state; and λ ∈ [0, 1] is the
discount factor. The return R =

∑N
i=0 λ

iri of an episode
is the summation of discount rewards received during the
episode.

For the robotic task learning applications discussed in this
paper, the state space s ∈ S is a 1-D vector that consists
of the robot joint angles and joint velocities, as well as the
current positions, orientations and velocities of the objects.

B. RL for Robotic Task Learning

With the MDP formulation, RL algorithm could be used
to train the agent for the robotic task learning. As shown in
Figure 2, we utilizes a actor-critic RL framework, where a
Q-network (critic) is used to approximate the Q-value, and
a policy network (actor) is used to generate the action based
on the current state. Q learning is adapted to update the Q
value. The policy gradient is computed to update the policy
network.

C. Policy Network with Deep Model Fusion

In this paper, Deep Model fusion (DMF) is proposed to
reuse previously trained knowledge in the policy network,
in order to improve the training efficiency and improve the
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Fig. 2: Deep Model Fusion Reinforcement Learning Architecture.

model performance. With the proposed DMF, we use primi-
tive policy models learnt from several different environments
in previous training. The fusion model is embedded as the
policy network to be trained on the robot agent in the changed
environment. With the primitive knowledge embedded in the
fusion model, the agent robot is capable of adapting to new
environments rapidly with better performance.

Typically, the primitive knowledge is generated by
training the robot agents in several premier environ-
ments with different features. Suppose those environments,
{Mp1 ,Mp2 , . . . ,Mpn}, are identical except the state tran-
sition probabilities P(st+1|st, at). For the actor-critic RL
algorithm such as DDPG, the policy is represented as π
and the policy network is usually a neural network with
parameters θπ . By training the robot agent under different en-
vironments {Mp1 ,Mp2 , . . . ,Mpn}, we can obtain different
premier policy models whose policies and network parame-
ters are denoted as {π1, π2, . . . , πn} and {θπ1

, θπ2
, . . . , θπn

},
respectively.

When the environment changes, the performance of learnt
policy may drop. The new policy model πf in our DMF-
RL method is then generated to improve the performance
by fusion of the premier policy models {π1, π2, . . . , πn},
as shown in Figure 3. Taking a three model fusion case
as an example, the model πf firstly loads the parameters
of 1st layer from each premier policy model as θ′π1

, θ′π2
,

and θ′π3
, respectively. Since the 1st layer of the premier

policy networks extract low level features from observations
and the observation spaces in premier models are identi-
cal, we use the features {hπ1

, hπ2
, hπ3
} extracted from the

{θ′π1
, θ′π2

, θ′π3
} as the primitive knowledge of the environ-

ments. All of the environmental features of premier models
contain useful information, so we combine them to further
boost the performance of πf .

Given the features {hπ1 , hπ2 , hπ3} extracted from the pre-
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Fig. 3: The Architecture of Policy Network with Deep Model
Fusion.

viously trained premier models, we use element-wise addition
(⊕), element-wise multiplication (�) and concatenation (‖)
followed by a fully connected layer (Ffc) to combine the
feature information from the premier models. Addition and
multiplication operations allow additive and multiplicative
interaction among different features without changing the
feature dimension d, while the Ffc allows interaction among
all elements and then maps to the original feature dimension
d. Thus, the policy πf after mode fusion is formulated as:

hf =(hπ1
⊕ hπ2

⊕ hπ3
)

‖ (hπ1
� hπ2

� hπ3
)

‖ Ffc(hπ1
‖ hπ2

‖ hπ3
).

(1)

where Ffc(x) = ω>fcx + bfc, ωfc ∈ R3d×d and bfc ∈ Rd
are the weight and bias of full connected layer, respectively.

For more general case, N premier models are represented
in a sequence Θ = (θ′π1

, . . . , θ′πn
) and the corresponding

features are denoted as h = (hπ1 , . . . , hπn), then the fused



feature of πf is represented as:

hf =(hπ1 ⊕ · · · ⊕ hπn)

‖ (hπ1 � · · · � hπn)

‖ Ffc(hπ1 ‖ . . . ‖ hπn).

(2)

Finally, the fused feature hf is fed into a fully connected
layer of neural network to build up the fusion model policy
πf . The DMF-RL framework takes πf as the policy network.
With the primitive knowledge of the previous environments
in πf , the robot agent is able to adapt to the new environment
rapidly.

D. Multi-objective Guided Rewards

We propose a Multi-objective, Guided Rewards (MGR)
system for the robotic task environment with sparse reward
to improve training efficiency. In many robotic applications
(e.g. pushing, peg-in-hole), a binary sparse reward is given to
the robot agent depending on whether it achieved the desired
goal. However, the sparse reward does not provided useful
information to train the robot agent, so the exploration in the
early stage is random and thus inefficient.

The MGR is designed to encourage the agent to explore
the state space, and also to guide the robot to the target with
the estimated immediate rewards. The MGR system consists
of three parts driven by three objectives: the final goal, the
sequential objectives (e.g. initial objective, the secondary
objective), and the prevention objective. The final goal is
represented by the binary sparse reward judging whether the
final desired goal is achieved. The sequential objectives are
the objectives that guide the robotic behaviors in sequential
phases to achieve the final goal. Finally the prevention
objective is to prevent any hindrance (e.g. obstacles, traps)
during the task process. The general MGR is formulated as:

r =α1Gf +

n∑
i=2

αiOi + αn+1Op (3)

where Gf is the final goal, N is the number of sequential ob-
jectives, Oi is the sequential objectives, Op is the prevention
objective, and αi is the constant scale factor.

Taking the robot pushing task as an example, the sequential
objectives are decreasing the distance between the robot end-
effector and the object doe the distance between the object
and target goal dog . We also consider a new scenario for the
pushing and sliding that there are obstacles on the table. So
the prevention objective is also driven by moving away from
the obstacles increasing the distance between the robot end-
effector and the obstacle des. The MGR for robot pushing
task is formulated as:

r(dog, doe, des) =α1(‖dog > η‖) + α2(−doe) + α3(−dog)
+ (‖des < µ‖)(log des − logµ)

(4)

where dog is the distance between the object and the target
goal, doe is the distance between the object and the robot end-
effector, des is the distance between the robot end-effector
and the obstacle, α1, α2 and α3 are weights for multiple
objectives, η is the distance threshold to measure whether a
goal is achieved, and µ is the distance threshold to measure
whether the obstacle is too closed.

IV. EXPERIMENT AND DISCUSSION
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Fig. 4: Robot pushing environments with different surfaces
and different object shapes (a) Bread (b) Lemon (c) Cereal
Box

A. Experiment Setup

OpenAI gym [22] simulation environment was used to
test the proposed method. We implemented the tests with
FetchPush, and FetchSlide environment with MuJoCo [23]
physics engine. For each task, we also customized envi-
ronment settings with different surfaces, object shapes and
obstacles to test the task generalization and environment
adaptation, as shown in Figure 4. DDPG-HER algorithm
is implemented and benchmarked based on OpenAI stable-
baselines [24]. A Multi-Layer Perception (MLP) based policy
network was implemented as policy network in this work for
the premier model.

The finite episode was set as 50 steps. In an episode, the
robot agent received a reward −1 in each step if it didn’t
achieve the desired goal, otherwise it received a reward 0.
The curiosity-driven reward function was implemented with
the weights α1 = 0.3, α2 = 0.35 and α3 = 0.35. The
distances among the object, the target goal, and the robot
end-effector were extracted from the simulation environment.
In real-world, the distance information is usually measured
with noise, so random noise was added to the distances dog ,
doe and des during the tests. In this paper, we used robot
pushing and sliding tasks as examples to test our algorithm,
in various different environment settings.



TABLE I: Success rate comparison of different methods

DDPG-HER DDPG-HER + MGR DMF-2 + MGR DMF-3 + MGR

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

Push
env-1 0.141 0.458 0.597 0.667 0.608 0.783 0.844 0.875 0.816 0.887 0.913 0.926 0.951 0.962 0.964 0.966
env-2 0.175 0.518 0.648 0.718 0.445 0.657 0.733 0.773 0.828 0.859 0.875 0.885 0.868 0.892 0.9 0.904
env-3 0.074 0.079 0.106 0.157 0.089 0.216 0.387 0.507 0.839 0.875 0.890 0.897 0.906 0.913 0.917 0.92

Sliding
env-1 0.206 0.342 0.411 0.451 0.342 0.513 0.597 0.645 0.424 0.576 0.647 0.679 0.662 0.726 0.755 0.774
env-2 0.098 0.158 0.224 0.291 0.183 0.296 0.376 0.425 0.302 0.509 0.606 0.659 0.618 0.725 0.766 0.79
env-3 0.089 0.13 0.147 0.159 0.323 0.512 0.588 0.632 0.472 0.612 0.672 0.708 0.677 0.738 0.764 0.766
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Fig. 5: Model Fusion for task generalization in robotic
pushing task with different environment dynamics

B. Results

We first evaluated the Deep Model Fusion (DMF) and
Multi-objective, Guided Reward (MGR)methods indepen-
dently. Then we also evaluate the overall proposed method
with both DMF and MGR. The results obtained in the tests
show that the proposed method significantly improved the
results in terms of learning speed and task success rate, when
adapting to the changed environment.

The proposed method was evaluated in different envi-
ronments (e.g. with different surfaces, different geometric
shapes) for each task. We implemented the proposed DMF
method that combined two models (labeled as DMF-2) and
three models (labeled as DMF-3), and compared them with
transfer learning (labeled as T.L), as well as training from
scratch (labeled as TFS). Figure. 5 shows that the results of
success rate and episodic return in robot pushing application.
Compared to training from scratch and transfer learning,
the robot agent learnt faster with our method. The robot
agent with primitive knowledge from our method demon-
strated good capability of task generalization and environ-
ment adaptation. The MGR was also evaluated with different
environment settings. Figure. 6 shows that the training
results of average success rate in robot pushing application.
Compared to baseline algorithms, the agent learnt faster with
the proposed MGR system.

Additionally, we further evaluated the overall proposed
method with both DMF and MGR. Table I shows the results
comparison with different other methods at different train-
ing stages. We compared the baseline method DDPG-HER,

DDPG-HER with MGR, as well as DDPG-HER with MGP
and DMF (labeled as DMF-2 + MGR for two-model fusion
and DMF-3 + MGR for three-model fusion) The success rates
of the robotic tasks with different methods were compared
under three different environment settings (labeled as env-
1, env-2 and env-3). The success rates at different training
stages (episodes = 50, 100, 150, 200) were also compared in
the table.

As shown in Table I, the proposed method demonstrated its
effectiveness among different applications in various training
stages. The success rate of the proposed method was consis-
tently higher than other methods, in different environments
and different training stages.
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Fig. 6: Result comparison of MGR and DMF+MGR methods
in robotic pushing application

C. Discussion

In the robotic task learning problem, the performance of
learnt model usually drops when there are significant changes
in the environment setting, though the learnt policy is also
able to adapt to certain change. It is also noticed that the
transfer learning converges faster, compared to training from
scratch. The proposed method that combines the knowledge
from different models outperforms the other methods by both
the learning speed and the success rate.

Additionally, as shown in Figure 5, DFM-3 and DMF-2
had very similar success rates and episodic returns, though
DMF-3 converged faster than DMF-2. Both DMF-3 and
DMF-2 significantly performed better than the baseline
method. Though the other methods achieved good success
rate in some cases, but their episodic return was still much
lower. And as observed in the tests, the agent trained with



the baseline method took longer time to complete the task in
one episode.

Overall, the proposed method outperformed the baseline
algorithms. The results show that our method is able to
generalize the learnt robotic tasks efficiently by combining
the knowledge in the previously trained models. The MGR
system also helps to convert the sparse rewards to dense
rewards with multiple objectives, where each objective could
be interpreted intuitively with real-world correspondences.
This feature makes the overall system explainable and robust.
The proposed DMF and MGR could also be used as flavors
on top of other RL algorithms to improve the performance.

V. CONCLUSION

In this paper, we propose a novel Deep Model Fusion
(DMF) method with Multi-objective Guided Reward (MGR)
system for generalizing robotic task learning and environ-
ment adaptation. The proposed method improves the training
efficiency of adapting the previously trained model to new en-
vironment by combining knowledge from those models. Our
method also improves the performance of the task learning
in terms of task success rate and average episodic return. The
effectiveness of the proposed method has been validated by
extensive studies in different environments settings.
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