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Abstract— This paper is concerned with divisible shared con-
trol, which decomposes the motion space into complementary
subspaces and distributes the control to the human and the
robot so that each can independently effect motion control in
its subspace. We present a divisible shared control scheme to
assist teleoperation tasks on a curved object surface, which
is difficult for a human to perform without assistance. We
designed and carried an experiment to investigate its effect
of user performance and work load. Experimental evaluation,
based on both quantitative and qualitative measures, suggests
that divisible shared control improves accuracy, speed, and
smoothness, while at the same time reduces cognitive load,
effort, and frustration.

I. INTRODUCTION

The study of human-robot collaboration is useful as it

helps to shed light on how to best combine the comple-

mentary proficiencies of human and robot to yield better

performance and efficiency in practical applications such as

teleoperation [1], [2], coassembly [3], automated driving [4],

and rehabilitation [5].

The concept of divisible, interactive, and antagonistic tasks

for human-robot or human-human interactions was discussed

in [6]. Divisible tasks are tasks which are composed of

subtasks that each agent can independently carry out. They

include cases where the tasks are decomposed into regions,

where each agent performs the part of the task related

to its designated region, or in terms of time, where each

agent perform its subtask in a sequential manner after the

other agent has completed its subtask. More interestingly,

divisible tasks also include those that can be split into

disjunct but complementary subspaces, such the translation

and rotational subspaces in rigid transformations. On the

other hand, interactive and antagonistic tasks are those where

there is no clear way of defining an independent subtask for

each agent and/or when the actions of an agent significantly

affects the performance of the other agent.

Based on this categorization of tasks in the context of

multi-agent interactions, we similarly classify human-robot

shared control into divisible and interactive categories, with

focus on teleoperative applications. Divisible shared control

distributes the control to the human and the robot in a

way that each agent can independently control a subtask.

Additionally, non-performance or bad performance of an

agent in its subtask does not affect the performance of the

other agent in performing its subtask, although the overall

task may not be completed. Erden and Maric [7] studied
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manual welding, assisted by a robot, which complemented

the human’s dexterous control with its own vibration filtering

and speed measurement, thereby improving the performance

of novice welders. Sreekanth et al [8] looked into curve-

following tasks where the human kinesthetically guides the

speed with which a robot moves along a predefined 3D path,

aided by impedance control to restore the effector towards the

path in the presence of lateral deviations. Such approaches

of constraining motion along certain paths while preventing

excursions into other forbidden zones are also called virtual

fixture methods, and were investigated previously for surgical

assistance robots and for aiding telemanipulation [9]-[11].

For interactive shared control, each agent’s control sub-

space overlaps with that of the other agent, and so there is a

direct effect of the other agent’s task performance, and vice

versa, that needs to be resolved. Each agent has to attempt

to either reject the other agent’s effect, comply with it, or

achieve a middle ground between the two. A continuous

human-robot role adaptation method was proposed in [12]

which adapts the robot’s control gain under a game-theoretic

framework based on kinesthetic disagreements from the

human. This adaptive method was improved in [13] by using

neural network based policy iteration to obviate the need for

an explicit model of the human dynamics. Other approaches

include risk-sensitive optimal control to adaptively switch

between model-based and model-free predictions [14] and

homotopy-based switching control to dynamically change the

roles between leader and follower [15].

In this paper, we focus on divisible shared control, and

investigate its use in assisting teleoperation of a robotic arm

to follow a path on a surface. Such a task is difficult for

a human to perform without assistance from the robot, due

to impoverished perception (e.g. limited depth information,

constrained field of view) of the remote scene (typically on a

2D screen) at the teleoperator’s end. The proposed divisible

shared control decomposes the end effector motion space

into two complementary subspaces, one for the human and

the other for the robot, such that each agent independently

controls the motion within the designated motion subspace.

In particular, the robot controls end effector orientation

and motion normal to the object surface, while the human

controls motion tangential to the object surface. We designed

and carried out an experiment to investigate user performance

and work load with and without the shared control, including

the use of a concurrent secondary task to test the cognitive

load. Both quantitative measures, such as path error and

jerk, and qualitative measures, such as frustration and mental

demand, are employed to evaluate the effect.



Fig. 1: Divisible shared control scheme for path following task on
a smooth surface

II. DIVISIBLE SHARED CONTROL FOR TELEOPERATION

ASSISTANCE

In this section, we formulate the divisible shared control

problem for teleoperated motion control on or near a surface.

An example task is that of following a path on an object’s

surface.

Consider a smooth surface in Euclidean space described

by S(X) = k, where X ∈ R
3 are coordinates relative to

a world frame, k a constant number, and gradient ∇S is

continuous and non-zero at any point on the surface. Then,

at any point XS on the surface, the unit normal is given by:

n(XS) =
∇S(XS)

‖∇S(XS)‖
(1)

and the tangent plane:

t(X,XS) = {X ∈ R
3 | n(XS) · (X −XS) = 0} (2)

Divisible shared control decomposes the motion space of

the end effector into two complementary subspaces, namely

XH ∈ R
3 and ξR = (XR, RR) ∈ R

3 × SO(3), such that

XH ·XR = 0 (3)

XH ∪ ξR ∈ SE(3) (4)

The control of end effector motion in XH is allocated to the

human and ξR to the robot controller. For a surface path

following task, an intuitive division of the motion space

is one in which the robot controls the distance of the end

effector to the surface, together with the orientation of the

end effector with respect to the local surface normal, while

the human controls the motion of the end effector on the

surface. Such a division makes sense because it is very

difficult for the human to accurately perceive errors in the end

effector orientation and the distance from the surface, given a

2D view of the remote scene, while it is easy for the robot to

do so using 3D sensors. On the other, the human can easily

see the on-surface path errors, so this divisible shared control

scheme allows the human to easily control where to move

on the object surface, while the robot supports the task by

ensuring that the end effector is properly oriented and close

to (or touching) the object surface.

Fig. 2: Task patterns straight (top), numeric (middle), and mixed
(bottom) for teleoperated tracing.

The robot’s translational control is defined as:

XR = n(Xs) (5)

Xs = argmin
Xs∈XS

‖Xe −Xs‖ (6)

where Xe is the end effector position. In other words, the

robot controls the translational motion along the normal

direction to the object surface at a point Xs on the surface

that is closest to the end effector. For locally convex surfaces

(e.g. spheres), Xs is unique if it exists within a neighborhood

of the end effector.

Besides controlling end effector motion in XR, the robot

also controls its orientation fully, so that it points perpen-

dicularly towards the object surface. Let the end effector

frame be Re = [rx, ry, rz]. Then, we can express the desired

orientation as

RR = [t1, t1 × n,n] (7)

where t1 is a unit vector obtained by projecting rx onto the

tangent plane t:

t1 = proj
t
(rx)

= rx −
rx · n

‖n‖2
n (8)

The motion subspace controlled by the human lies on the

tangent plane at the point Xs on the object surface:

XH ∈ t(Xs) (9)

As a summary, Figure 1 shows the divisible shared control

scheme based on the aforementioned division of end effector

motion space into complementary subspaces, for a path

following task on a smooth object surface.

III. TELEOPERATION EXPERIMENT

An experiment was designed and performed to investigate

the effect of divisible shared control on performance and

workload when performing teleoperation tasks involving

tracing patterns on a spherical surface with a marker pen

mounted at the robot end effector.

Ten subjects (8 male, 2 female) between 17 to 40 years

of age participated in the experiment, none of which had

prior training with the task, but most had some robotics



Fig. 3: The teleoperation interface displays views of the remote
scene and enables the subject to control the robot’s motion through
a haptic device.

background or experience working with robots. One of the

subjects was left-handed, and the rest right-handed.

Three task patterns were considered, as shown in Figure

2. Task pattern straight consists of alternating lateral and

longitudinal straight segments with no disjoints. Task pattern

numeric consists of mostly curved segments in the form of

numeric symbols, with disjoints between the symbols. Task

pattern mixed consists of a mixture of straight and curved

segments with no disjoints. The task patterns were printed

on white paper, cut out, and pasted on the top surface of

three identical sphere objects of radius 0.1m, allowing for

convenient changeover between experimental conditions.

The teleoperation interface consists of a right-handed

Omega7 haptic device and a 40-inch display, as shown in

Figure 3. A subject, seated about 1m from the display, holds

the haptic device with his/her right hand to control the end

effector of a Kuka iiwa robot arm. The robot arm is about

1.5m to the left of the subject and is out of view when the

subject fixates on the display in front of him/her. The display

screen shows two views (see Figure 4) to the subject, one

from a webcam mounted on the end effector, and one from

another webcam mounted on a tripod. The former provides

a close-up view of the pen tip moving near or on the object

surface, as well as the task pattern, while the latter shows the

entire robot arm and the object from a fixed external point

of view.

The experiment protocol is as follows. The subject was

given both written and verbal instructions on the task to be

performed, as well as the four experimental conditions to be

tested:

1) M: manual mode (i.e. no shared control)

2) A: assisted mode (i.e. shared control)

3) MS: manual mode with secondary task

4) AS: assisted mode with secondary task

The primary task was to trace the pattern on the object,

from the start point to the end, using the marker pen mounted

on the end effector. The secondary task involved mental

addition of two integers audibly presented by computer

speakers, and the subject has to give the answer vocally.

After informed consent was obtained, the subject famil-

iarize himself/herself using the haptic device to teleoperate

the robot arm, so as to minimize performance gains due to

learning effects. Then, the experiment was started, and the

Fig. 4: Views of the sphere object, end effector and robot arm on
the teleoperation interface.

subject worked on task pattern straight under the conditions

M, A, MS, and AS, in this order. For each condition, the

subject performed the task twice. On completion of the tasks

for this task pattern under all four conditions, the subject

filled out a questionaire assessing their work load, before

repeating the tasks for a different task pattern numeric, and

finally for task pattern mixed.

IV. EVALUATION MEASURES

Both quantitative measures of task performance and quali-

tative measures of operator workload are used for evaluation

of shared control for the teleoperation tasks.

A. Quantitative Measures

We define the following quantitative measures:

1) Total task duration, T = tf − t0, where tf is the final

time and t0 the initial time.

2) Integral normed error, given by:

E =

∫ tf

t0

‖e(t)‖dt (10)

where e(t) is the shortest vector from the endpoint

position x(t) to the task pattern.

3) Integral normed jerk, given by:

Jrk =

∫ tf

t0

‖jrk(t)‖dt (11)

where jrk(t) is the filtered jerk obtained by numeri-

cally differentiating the filtered endpoint position x(t).
We use a tenth-order Butterworth low pass filter with

normalized frequency of 0.05.

4) Variance of duration for short and long segments of

task pattern straight:

νshort = σ(s1, s2, ..., sn) (12)

νlong = σ(l1, l2, ..., ln) (13)

where σ(•) is the standard deviation of •, and si, li
denote the ith short and long segments, respectively.

5) Secondary task score

S =
Nc

Nc +Nw

Tmin

T
(14)

where Nc is the number of correct answers, Nw

wrong answers, and Tmin the minimum duration over

all subjects, with and without shared control, for the
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Fig. 5: Endpoint paths for task pattern straight (top), numeric
(middle), and mixed (bottom), with and without shared control.
Green ‘+’ markers indicate points on the desired path.

same task pattern. Note that Tmin is for normalization

purpose and ensures that the maximum secondary task

score is in the interval [0, 1].

B. Qualitative Measures

For qualitative measures of operator workload, we used

a subset of questions from the NASA TLX questionnaire,

which asked subjects to assess themselves on mental demand,

physical demand, performance, effort and frustration, each

based on a 21-point scale (lower is better). Specifically,

subjects were asked the following questions:

1) Mental Demand (1: low − 21: high):

How mentally demanding was the task?

2) Physical Demand (1: low − 21: high):

How physically demanding was the task?

3) Performance (1: high − 21: low):

How successful were you in accomplishing what you

were asked to do?

4) Effort (1: low − 21: high):

How hard did you have to work to accomplish your

level of performance?

5) Frustration (1: low − 21: high):

How insecure, discouraged, irritated, stressed and

annoyed were you?

To normalize the scores in a way that is more comparable

between subjects, we use the maximum and minimum scores

for each subject and re-scale all the scores for that subject
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Fig. 6: Single subject’s path error for task pattern straight with
(blue) and without (red) shared control.

to be between 1 and 10. The normalized score Qnorm is:

Qnorm = 1 +
9(Q−Qmin)

Qmax −Qmin

(15)

where Qmin and Qmax are the minimum and maximum

scores, respectively, for each subject.

V. RESULTS AND EVALUATION

In this section, we examine both the quantitative and

qualitative (subjective) effects of divisible shared control.

A. Quantitative Effects

The effect of shared control on the integral normed error

(10) can be clearly seen in Figure 5. Without shared control

(i.e. manual mode), the path of the robot end effector as

controlled by the user diverges erratically from the desired

path on the spherical surface. Many kinks are seen on

the paths, indicating jerky motions. However, with shared

control (i.e. assisted mode), not only are path errors markedly

reduced, but also the motions are smoother. This is true for

all three task patterns. Note that for task pattern numeric, the

path departs from the sphere surface to move from the end

of one number pattern to the next, since the number patterns

are separated on sphere surface.

Figure 6 shows how the path error in each direction of the

sphere’s frame changes with time for task pattern straight.

The error in the z-direction is the largest for the manual

mode, as expected, since the user is unable to perceive the

z-error well on a 2D display screen. With shared control, the

z-error is drastically reduced since the robot took over the

motion control in the direction of the normal to the sphere’s

surface. The other two task patterns show similar results.

As shown in the top row of Figure 7, the integral normed

error is significantly reduced when shared control is active.

This effect is consistent for all three task patterns on the

sphere surface, and also in the presence of a secondary

task where the user had to perform mental arithmetics

while teleoperating the robot. No significance difference was
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Fig. 7: Quantitative measures of performance, namely error (top),
jerk (middle), and duration (bottom). Lower is better. A and M

denote with and without shared control respectively. AS and MS

denote presence of secondary task for A and M, respectively.
Asterisk ‘*’ indicates significant difference (p < 0.05).

observed between A and AS, nor between M and MS. There

is a small decrease in mean from A to AS and from M to MS.

This could be due to the users becoming familiarized with

the task and showing improved performance, since AS and

MS trials follow A and M trials respectively.

The integral normed jerk (11) is significantly reduced

when there is shared control, as seen in the middle row of

Figure 7. This is true for all task patterns, with and without

the secondary task. The effect is more pronounced in task

patterns straight and mixed, but less in task pattern numeric.

This is likely due to the fact that task pattern numeric

requires additional up-lateral-down motions when advancing

from one numeric symbol to the next. Even though shared

control helps to smoothen the path-following motions on the

sphere’s surface, the up-lateral-down motions contribute to

the integral normed jerk, resulting in a smaller reduction of

the jerk measure than expected.

In terms of task completion time, the bottom row of Figure

7 shows that it similarly decreases with the help of shared

control, for all task patterns, with and without the secondary

task. The completion for task pattern straight is the longest

because the total path distance is the greatest, and also

involves the most number of sharp turns, which are difficult

for most users to follow accurately. From Figure 8, we see

that the standard deviation of the completion time increases
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without shared control, for both long and short segments of

task pattern straight, for all subjects. Inter-subject variance

in the standard deviation values is high without shared

control, and long segments of the task pattern produce greater

variance than short segments. However, with shared control,

inter-subject variance in the standard deviation values is low

and similar for both long and short segments. This suggests

that shared control can be helpful in reducing the variance

of performance, or ensuring the consistency of performance,

across users with different skills and proficiency.

Although the secondary task had no effect on the error,

jerk, and duration, we observed an effect of shared control

on the secondary task performance. The secondary task score

increased in the presence of shared control for all task

patterns, suggesting that cognitive load is reduced through

the role of the robot in assisting the motion control that

is difficult for the user, thus giving them more cognitive

resources to attend to the secondary task.

B. Qualitative Effects

Qualitative effects of shared control were assessed from

the normalized score (15) obtained from the NASA TLX

questionaire. As evidenced from Figure 10, where it is noted

that lower scores are better, subjects rated themselves to have

performed better and used less effort when assisted by shared

control, for all task patterns. On average, they rated them-
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Fig. 10: Qualitative scores from questionnaire (lower is better).
Asterisk ‘*’ indicates significant difference (p < 0.05).

selves to have performed worse when there was a secondary

task, even though actual quantitative performance is slightly

better on average (see Figure 7). This perception may be

biased by the difficulty and frustration of the performing

both primary and secondary tasks simultaneously.

Subjects felt that both mental and physical demands of

performing the task increased without assistive shared control

from the robot. This is consistent for all task patterns and for

the case where there was a secondary task. Similarly, self-

rated frustration increased without shared control for all task

patterns with and without secondary task. These qualitative

results suggest that shared control helped to reduce perceived

cognitive and physical load, as well as frustration with a task

that is difficult to perform.

VI. CONCLUSION

This paper has presented an experimental evaluation of

a form of divisible shared control suitable for teleoperation

tasks on or near an object surface (e.g. painting, blasting).

In particular, the robot controls end effector orientation

and motion normal to the object surface, while the human

controls motion tangential to the object surface. It was

shown, based on both quantitative and qualitative measures,

that this way of dividing the control between human and

robot improves the accuracy, speed, and smoothness of the

task motion, and also reduces the cognitive load, effort, and

frustration of the human. Interestingly, it was also found

that the shared control helped in reducing the variance of

performance across different users.
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