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Abstract—The use of robots has been proposed as promising
human assistants in accomplishing tasks that are otherwise too
tough or dangerous to be executed by human alone. As robots
in different forms have their differentiating strengths, a system
that uses a combination of these robots can be more robust
and resilient in achieving its mission. For example, UAVs can be
used to quickly explore an unknown environment while ground
robots can be used to navigate through the environment, clearing
obstacles and potential dangers for human to enter. In this work,
we design a unifying framework to allow human to control and
accomplish an exploration mission using heterogeneous robot
types. A prototype system is implemented using the Google
Tango to control an UAV and a wheeled robot for the human
to perform environment mapping. Preliminary experiments have
been carried out to study the feasibility of the system.

I. INTRODUCTION

Robots have been used as human assistants in applications
across different domains. Many of these applications focus on
the use of a single type of robot to accomplish a particular task,
e.g. transportation of goods, manipulation, social interaction
and so on. As robots in different forms have different strengths
and weaknesses, a combination of these robot types together
with a human in the loop could open up a greater range of
tasks robots could do for humans. For instance, an aerial robot
is capable of exploring an unknown terrain within a relatively
short duration, however, it is relatively difficult to detect threats
hidden in the environment. It is the completely opposite for a
ground robot in this particular scenario. Adding a human into
the system will also accelerate the exploration process and
zoom into the targets of interest as the human can provide
expert knowledges which could be otherwise hard to transfer
to robot systems.

In this project, we focus on the prototype design of a human-
robot teaming system via an interactive interface. This system
will allow users to control different types of robots seamlessly
on a single application to perform terrain exploration. We
implement this system using the Google Tango Tablet as the
interactive command interface with two types of robots - a
UAV and a mobile robot. This allows the human to dispatch
an UAV to perform a fast environment search/mapping task
before deploying a ground robot to clear the passage for
the human to move in. The system is design to have two
independent modules - a motion tracking and control module
and an image processing and mapping module. We conduct

a number of experiments to test and benchmark the system
modules including a human preference on a UAV control
mode. These preliminary experimental results confirm that our
implementation is positive.

The rest of this paper is organised as follows: We will
present some brief related work in Section II before intro-
ducing the overall system architecture in Section III followed
by the detailed implementation of modules. Experiments with
results are described and discussed in Section VII before
conclusion for future work.

II. RELATED WORK

Teleoperative control interface for remote robots have been
researched and discussed in many bodies of work [1], [2], [3].
However, there is limited work on actual implementation of a
system to allow a user to explore an environment without the
need of introducing a global view camera [2].

There are several control modes that have already been
invented and implemented for the AR Drone 2.0. The most
well known modes are from the official app 1 by Parrot
Company running on a generic iOS or Android device. The
app provides a normal control mode with virtual joysticks
as well as a creative mode where the user can tilt his/her
device to control the drone. Application has alsobeen designed
to work with a game controller such as the PS3s dron-ps3-
controller 2. However, to our knowledge, there is no study on
the design of a seamless control mode that enable users to
control UAVs, such as use of Goolge Tango, a tablet device
with motion tracking capability to perform control. The use of
Project Tango on robots has also limited literature. The most
common research is on autonomous flight, with a Tango device
mounted on the drone [4]. This is not possible with AR Drone
2.0 as payload is the primary concern.

To enable UAVs to perform aerial mapping, panoramic
stitching is key. However, development work on mapping with
the AR Drone is very limited. Most work uses a 3rd party
stitching algorithms [5]. However, many of these algorithms
are computationally expensive and we have not notice any pro-
posed system architecture allowing toggling for computations
to be carried out aboard or externally.

1https://play.google.com/store/apps/details?id=com.parrot.freeflight&hl=en
2https://www.npmjs.com/package/drone-ps3-controller



III. OVERALL ARCHITECTURE

Fig. 1. The overall architecture of the implemented system

Fig. 1 illustrates the overall architecture of the implemented
system with two different types of robots for an environment
exploration mission. The system is divided into two main
modules, the motion tracking and control module (MTC) and
the image processing and mapping module (IPM). The MTC
module implements specific control drivers for each robot type
and integrates the control function into one unifying control
interface - in this case, the Google Tango Tablet, for seamless
control experience. The captured data from the robot will then
be sent to the IPM module for mapping. As having external
server may not be an option, the system allows processing
both with and without a server.

IV. DRONE MTC MODULE

Using the API 3 of Project Tango, the motion tracking
data could be extracted at the frequency of 100Hz from the
device. This 6-axis raw data from Tango is then treated using
a low-pass filter [6] to reduce noise level as well as sudden
fluctuations according to (1):

yi = αxi + (1− α)yi−1 (1)

where xi is the ith-new data and yi is the ith-smoothed data.
α is the smoothing factor that can be determined empirically. A
smaller α gives less effect in attenuating high-frequency noises
and a larger α creates a delay in recognition of motion. The
value of α = 0.1 is empirically determined to be the optimal
value for the Tango output using data-driven approach.

Typically, a UAV API provides an control interface for gaz,
pitch, roll and yaw. For AR Drone 2.0, it also provides several
higher level functions, such as keep stationary and blending
of motion primitives.

Three control modes have been designed and implemented
in this work using the tracked motion data from the Tango
Tablet as inputs:

3https://github.com/SUPENTA/ardrone-sdk-android

A. Joysticks Mode

Joysticks Mode is the most traditional way to control a
drone. We integrated the joysticks mode provided by AR
Drone 2.0’s official App into our system. Two control screen-
based joysticks are shown. One controls the yaw and altitude
while the other controls the pitch and roll of the drone. We
use a simple linear interpolation method to set the values
according to the displacements the fingers are offset from the
joystick centres. This mode provides direct control of the drone
parameters, however, it is not very intuitive or user-friendly.
Training is required for a user to adapt to this control mode.

B. Tilting Mode

We borrow a classic concept in video games for controlling
cars and drones to map the motion tracking signal of the
Tango Tablet to the AR Drone - the tilting mode. The user
simply tilts the Tango Tablet to move the drone towards the
direction of desire. Although the official App provides a basic
tilting control interface, several optimisations have been done
to improve the user experience:

First, a minimum tilt threshold to activate the tilting control
is implemented. As human hands are neither accurate nor
precise, holding an external device at a particular pose, such
as 0 pitch and roll, is an extremely difficult task for any brief
moment. This is exacerbated by the noise picked up by the
IMU aboard the Tango. The aforementioned low-pass filter
is applied to remove the negative effect of “shaky hands”
while we introduce a threshold value to set the minimum angle
with which a “tilt” motion can be considered valid. A default
value of ±0.2 radian is set using empirical results and can be
customised on-the-fly.

Secondly, we set the natural holding pose of the device as
the stationary reference pose. When the user holds the tablet
naturally, the tablet is not upright. Therefore, from the user
experience point of view, an offset to the forward-backward
tilt angle should be introduced. In practice, 0.75 radian is a
good reference and can be customised on-the-fly.

Thirdly, a customisable toggle button to send controller
commands to the drone is implemented. As the user will be
controlling the drone most of the time when the application
is launched, the function of the button in the official App to
indicate user taking control should be reversed. The drone
should ideally listen to commands when the user is not
pressing the button, removing the drudgery of holding a button
on the screen most of the time. Nevertheless, user should be
able to customise this functional button.

Fourthly, the original App provides a 2-D joystick for the
user to control the yaw and altitude of the drone. This can
be reduced to a 1-D joystick as the yaw of the drone can be
synchronised with the direction the user is facing. The detailed
method will be described in Exploring Mode.

Tilting mode provides an easy control interface for the user
when the drone is in sight. However, when the drone goes off
sight, user can only rely on the video feed to control the drone
which makes this mode less desirable.



C. Exploring Mode

One primary contribution of this work is the introduction
of the exploring control mode. This mode allows a user to
control the drone intuitively and without any prior training or
adaptation to the interface. The drone will simply follow the
user’s own physical motion while holding the Tango Tablet at
hand. For example, the drone will turn anticlockwise should
the user turns anticlockwise himself. User can use the video
stream to decide on where he/she wishes to move to like
exploring in a virtual environment.

The velocity in the x (forward) and y (leftward) directions
of the user is obtained by differentiating the displacement of
the Tango Tablet. A minimum threshold value is set to trigger
movement in each direction with a heuristically derived default
value of ±0.25 m/s in linear directions. A scaling factor is then
applied to the velocities to set the power controlling the drone
motion. The default value in both linear axes is 0.4 and can
be customised by the user on-the-fly.

The yaw (rotational) velocity initially followed similar ap-
proach as the linear ones. However, significant drifts have been
discovered due to the low quality on board sensor. Instead, we
use the absolute yaw of the Tango Tablet to directly map to
the drone. For example, a yaw power value of 50 will be set
if the yaw values on the Tablet and the drone are 120 and 70
respectively.

To control the altitude of the drone, a 1-D joystick is
provided on the screen and according to the extent of the users
control, the setGaz(double power) function will be called with
corresponding power.

The system also provides a button to pause syncing the
user’s motion to the drone so that the user can reset the
reference frame. When the button is pressed, the drone is set
to be stationary and the user can freely relocate to a new pose.

V. MOBILE ROBOT MTC MODULE

To ensure seamless control experience for the user, a con-
troller module is built for a wheel-based mobile robot into the
same control interface on the Tango Tablet.

A. Hardware Set-up

The wheeled robot consists of an Arduino Uno board
with an additional Bluetooth module connected to a robot
shield (as shown in Fig. 2). 4 pins of the Arduino chip are
connected to the two motors, with every two pins controlling
one wheel(forward spinning and backward spinning). The
Bluetooth module is also connected to the board I/O to provide
wireless data transmission. Video streaming hardware similar
to the Drone set-up can also be added to the robot if needed.

B. Communication and Commands

This wheel robot is programmed to run a 3-state finite state
machine (FSM) [7]. The states are STANDBY, INCOMMAND
and RETRIEVINGEXTRA. When the robot is powered-on, it
takes the STANDBY state. The state machine will transition
into INCOMMAND and listen to ASCII character commands
upon the Bluetooth serial port receiving a specific byte (in this

Fig. 2. The prototype wheel-based mobile robot used for development of our
intuitive control interface

case, ‘−128’ is used). There are four command characters:
‘F’ denotes Forward, ‘B’ denotes Backward, and ‘P’ denotes
Brake and ‘S’ denotes Changing Speed. After receiving a
command character, the FSM will advance to the state of
RETRIEVINGEXTRA in order to retrieve the third byte that
provides extra information for each command. For example,
when the command is ‘F’ or ‘B’, the value of the third
byte should range between −100 ∼ 100 to set the rate of
turning, where a negative value denotes turning left and vice
versa. When the command is ‘S’, the third byte ranges from
−0 ∼ 255 indicating how fast the motor should run. After
receiving the third byte, the robot goes back to STANDBY
state. The control-loop frequency is set at 25Hz.

C. Driving Mode

To optimise the controlling experience, a control mode
much like driving a car is implemented on the Tango tablet.
There are two buttons provided on the UI interface - ‘For-
ward’ and ‘Backward’ which correspond to the ‘F’ and ‘B’
commands respectively. When no button is pressed, a stream
of ‘−128’ ‘P’ ‘0’ is constantly sent to the robot to keep robot
stationary. The rate of turning λ is determined by the pitch
value of the Tango Tablet providing the value of left and right
tilts θ in 2. A threshold on the pitch value for setting the
turning rate is set at the default value of ±0.1 radian. A ceiling
for the pitch value is also introduced at ±0.9 radian. Both are
customisable on the fly.

λ = sign(θ)int(((|θ| − 0.1)/(0.9− 0.1) ∗ 100) (2)

Power for the motors can be adjusted via the Android
SeekBar on the UI interface with which the user can adjust
the power of the motor.

VI. IMAGE PROCESSING AND MAPPING MODULE

One primary task the system could accomplish while per-
forming terrain exploration is mapping. In this work, we
demonstrate how vision-based mapping could be done on the



drone while could later be easily replicated onto the ground
robots.

A. Setting Up the Parameters

In order to perform visual mapping on the AR Drone 2.0,
the frontal camera (720p @ 640× 360 resolution) attached to
the drone has to be modified to face downwards to provide
a clearer aerial view beneath the drone for image stitching.
Through the AR Drone API, images captured by thi camera
can be streamed at 30fps. In order to store the images and
process the images at the same time, two threads are created to
handle the two processes independently while the latter could
be handled by an external machine if available.

To enable more accurate image stitching, sufficient number
of salient features should be present in any two successive
images. Empirically, two successive images should not differ
more than 50% in distance in both axes on the AR Drone
2.0. In fact, an optimal distance is approximately 10% of
the dimension of the image. Depending on the speed of the
drone, images can be collected at different frequencies to
ensure successful stitching. The approximate relationship can
be described by 3:

f =
vmax

α · 2h · tan(FOV
2 )

(3)

where vmax is the max(vx, vy) of the drone, h is the altitude
of the drone, FOV is the field of view of the camera and
α is the percentage of movement of two successive images,
10% will be a good value. The height of the drone can be
retrieved from the navigation data of the AR Drone, as it
has a ultrasound emitter along with a pressure barometer for
measuring its relative altitude.

To simplify implementation on the drone for computational
efficiency, based on a suitable data collection frequency, we
could set a speed ceiling for the drone. TABLE I shows an
example with h = 1 m, α = 10% and FOV = 64◦:

TABLE I
RELATIONSHIP OF THE DRONES VELOCITY AND THE

FREQUENCY OF IMAGE CAPTURING AT RELATIVE ALTITUDE = 1
M

Drone’s vmax(m/s) Frequency(Hz)

0 < vmax ≤ 0.62 0.62/(10% ∗ 2 ∗ 1 ∗ tan(32◦)) = 5

0.62 < vmax ≤ 1.25 10

1.25 < vmax ≤ 1.87 15

1.87 < vmax ≤ 2.50 20

2.50 < vmax ≤ 3.12 25

As image blurring occurs when either the object in view
or the camera is at motion. In order not to further limit the
travelling speed of the drone, according to [8], we sharpen the
images using a sharpening kernel({-1,-1,-1},{-1,9,-1},{-1,-1,-
1}). A comparison before and after the treatment is shown

in Figs. 3a and 3b respectively. Fig. 3b can be stitched using
OpenCV tools while Fig. 3a fails.

(a) Before applying a sharpening kernel

(b) After applying a sharpening kernel

Fig. 3. Sharpening the images for better image quality

B. Image Stitching Using OpenCV

OpenCV provides a Stitching library which contains a high
level API for stitching images. However, the computation cost
is potentially high. We devise a simple naive algorithm to
benchmark the quality difference against OpenCV as shown
in TABLE II

TABLE II
A SIMPLE IMAGE STITCHING ALGORITHM

Step Description
1 Find features in two sharpened images using a feature detec-

tion algorithm. (In this case OpenCVs ORB Feature Detector
is used since SIFT algorithm is non-free).

2 Get the descriptors of the features using OpenCV and used
brute force to get the 2 best matches for each query and apply
a ratio test [9] to optimise the matches.

3 Find the homography transformation of the second image
from the matches using RANSAC algorithm provided by
OpenCV.

4 Apply the homography transformation to the second image
using OpenCV function perspectiveTransform and copy the
second image onto the first image.

We compare results in stitching the 13 successively captured
images from the AR Drone 2.0 using both methods. The
empirical results are shown in Fig. 4

We can see from Fig. 4 that the stitched result is significantly
better/with less distortion than that from a naive algorithm.
For example, the dustbin remained round in Fig. 4b while
being distorted in Fig. 4a. We thus decided to trade-off the



(a) Stitched result using our naive algorithm

(b) Stitched result using OpenCV’s stitching module

Fig. 4. Empirical stitching results using a naive method and the OpenCV
stitching tool.

computational cost for better quality. The computational cost
issue could be solved externally using additional distributed
computing resources.

C. Optimisations

In order to expedite the image stitching process, we apply
the optimisation technique proposed in [10]. Firstly, a match-
ing mask can be applied so that only successive images are
compared in feature matching:

S t i t c h e r s t i t c h e r = c r e a t e D e f a u l t ( ) ;
Mat matchingMask ( num imgs , num imgs , CV 8U , 0 ) ;
f o r ( i n t i = 0 ; i < num imgs−1; ++ i ){

matchingMask . a t<uchar >( i , i +1) = 1 ;
}
s t i t c h e r . se tMatch ingMask ( matchingMask .
getUMat (ACCESS READ ) ) ;

Secondly, the registration resolution and seam estima-
tion resolution of the algorithm can be modified to
a smaller value to give a significant reduction in the

time used.(using stitcher.setRegistrationResol(double x) and
stitcher.setSeamEstimationResol(double x)).

VII. EXPERIMENTS & RESULTS

A. Comparing Different Drone Control Modes

Fig. 5. Illustration of a student controlling the drone in an indoor environment.

As mentioned in Section IV, three control modes have
been implemented in this work, namely Exploring Mode,
Tilting Mode and Joysticks Mode. We conducted an experiment
with 30 senior high school students who are technologically
inclined. All the participants are introduced to the 3 control
modes of the drone and are asked to freely control the
drone in an indoor and spacious room (shown in Fig. 5).
After experiencing the 3 different control modes, a survey is
conducted to determine their preferred control mode which
they feel most easy and comfortable with in controlling the
drone. The results are tabulated in Table III.

TABLE III
SURVEY RESULTS ON THE PREFERRED DRONE CONTROL MODE

Control Mode Number of Votes Percentage of Total Votes

Exploring 19 63.3%

Tilting 9 30%

Joysticks 2 6.67%

Total Votes 30 100%

From the results, it is evident that exploring mode is the
preferred control mode among the subjects. Joysticks mode are
least favourable and only should be used for more precise and
accurate controlling. Hence, the new control mode designed in
this work can be a better alternative for controlling any given
drone.

B. Mapping on the AR Drone

To test the IPM Module implemented in Section VI, an
experiment to stitch 32 images collected from AR Drones
camera while flying is conducted on both a MacBook Pro (2.6



GHz Intel Core i5) and Project Tango Tablet using OpenCV
with the same parameter configuration. There are various
objects placed in the environment, thus there can be enough
features identified in the images.

It took 5 minutes and 12 seconds for MacBook Pro to
complete the task and 16 minutes and 12 seconds for the Tango
tablet. The stitched results are shown in Fig. 6:

(a) from MacBook Pro

(b) from the Tango tablet

Fig. 6. Scene stitched results

From visual inspection, the result produced by the Tango
Tablet is more natural than that by the MacBook Pro. This
could be due to some minor optimisation algorithms used by
OpenCV in iOS and Linux. However, processing aboard the
Tango Tablet took significantly longer than on the MacBook
Pro acting as a remote server. Further investigation is needed
to use another Linux server for OpenCV stitching quality
verification.

C. Estimating Complexity of OpenCV’s Stitching Algorithm

To empirically determine the algorithmic complexity of the
OpenCV algorithm, we plot the time taken against the number
of images stitched as shown in Fig. 7. A quadratic estimation
has been fitted to the 32 data points. The statistics shows
strong correlation between the fit and the raw data. Thus, the
empirical algorithmic complexity is approximately O(n2).

VIII. CONCLUSIONS

In this paper, we presented our prototype design of a human-
robot teaming via an intuitive interaction interface. Two novel
control modes have been proposed in this work on a single
control unit. We implemented the system using the Google

Fig. 7. Graph of time taken to stitch images v.s number of images to stitch.

Tango Tablet as the interactive media to command two types
of robots - a UAV and a generic mobile robot with different
noise treatments. Three experiments were conducted to under-
stand human preference on UAV control mode, computational
efficiency and mapping algorithm performance running on
different operating systems.

We plan to introduce stereo vision for the ground robot as
well as GPS for both types of robots to provide non-vision-
based SLAM services for the robots. This will help to expedite
computation for mapping and localisation.
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